Unsupervised Representation Learning Meets Pseudo-Label Supervised Self-Distillation: A New Approach to Rare Disease Classification
نویسندگان
چکیده
Rare diseases are characterized by low prevalence and often chronically debilitating or life-threatening. Imaging-based classification of rare is challenging due to the severe shortage in training examples. Few-shot learning (FSL) methods tackle this challenge extracting generalizable prior knowledge from a large base dataset common normal controls, transferring diseases. Yet, most existing require be labeled do not make full use precious examples To end, we propose work novel hybrid approach disease classification, featuring two key novelties targeted at above drawbacks. First, adopt unsupervised representation (URL) based on self-supervising contrastive loss, whereby eliminate overhead labeling dataset. Second, integrate URL with pseudo-label supervised for effective self-distillation about diseases, composing taking advantages both (pseudo-) Experimental results skin lesions show that our substantially outperforms FSL (including those using fully dataset) via integration driven self-distillation, thus establishing new state art.
منابع مشابه
Meta-Unsupervised-Learning: A supervised approach to unsupervised learning
We introduce a new paradigm to investigate unsupervised learning, reducing unsupervised learning to supervised learning. Specifically, we mitigate the subjectivity in unsupervised decision-making by leveraging knowledge acquired from prior, possibly heterogeneous, supervised learning tasks. We demonstrate the versatility of our framework via comprehensive expositions and detailed experiments on...
متن کاملOptimization of Text Classification Using Supervised and Unsupervised Learning Approach
Text Classification, also known as text categorization, is the task of automatically allocating unlabeled documents into predefined categories. Text Classification means allocating a document to one or more categories or classes. The ability to accurately perform a classification task depends on the representations of documents to be classified. Text representations transform the textural docum...
متن کاملSemi-supervised Learning for Multi-label Classification
In this report we consider the semi-supervised learning problem for multi-label image classification, aiming at effectively taking advantage of both labeled and unlabeled training data in the training process. In particular, we implement and analyze various semi-supervised learning approaches including a support vector machine (SVM) method facilitated by principal component analysis (PCA), and ...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملCloud Computing; A New Approach to Learning and Learning
Introduction: The cloud computing and services, as a technological solution for developing educational services, can accelerate the provision and expansion of these highly useful services. This study intended to provide an overall picture of practical areas of learning services based on cloud computing teaching and learning equipment. Methods: This was a theoretical hybrid research study in whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-87240-3_50